Поворот не туда
Российский астрофизик рассказал о своем исследовании необычного поведения группы экзопланет.
Экзопланета HAT-P-7b рядом со своим светилом
Изображение: NASA, ESA, and G. Bacon (STScI)
Астрофизики опубликовали в журнале Astronomy & Astrophysics статью, посвященную механизму ретроградного движения далеких экзопланет. Такие планеты движутся вокруг своих светил в направлении, противоположном собственному вращению звезды. Первым автором статьи значится российский ученый Эдуард Воробьев из Ростова-на-Дону. «Лента.ру» решила узнать у астрофизика подробности его нового исследования.
Чем вызван интерес к ретроградным экзопланетам?
Эдуард Воробьев: На самом деле, к вопросу объяснения феномена ретроградных планет я пришел, как это часто бывает в научных исследованиях, случайно. Я давно изучаю с помощью численного гидродинамического моделирования природу газопылевых дисков вокруг молодых звезд. Согласно традиционным представлениям, звезды, подобные Солнцу, образуются в результате гравитационного сжатия плотных и холодных (минус 260 градусов Цельсия) газопылевых облаков. В процессе сжатия облако ускоряет свое вращение, подобно фигуристу, исполняющему винт, что приводит к образованию газопылевого диска вокруг зарождающейся звезды.
Именно в этих так называемых протопланетных дисках в конечном счете образуются планеты — либо в результате постепенного слипания пылевых частиц в твердые протопланетные ядра с последующим захватом газовой атмосферы (так называемая теория аккреции на ядро), либо в результате гравитационной фрагментации диска, приводящей к образованию газопылевых эмбрионов с последующим сжатием и формированием планет-гигантов (так называемая теория фрагментации диска).
До недавнего времени считалось, что облака эволюционируют в том окружении, где они «появились на свет». При этом влияние внешней среды в основном сводится к нагреву электромагнитным излучением, которое пронизывает практически всю космическую среду. Однако недавнее численное моделирование и наблюдения показали, что облака образуются в турбулентной среде и подобно рою пчел находятся в постоянном хаотическом движении. Перемещаясь с места на место, облака могут оказаться совсем в других условиях, не таких, в каких они образовались. Например, облако, вращающееся в одном направлении, может попасть в среду, вращающуюся в противоположном направлении.
Само разогналось
Самое быстрое шаровое скопление и вспышки на Луне в обзоре «Ленты.ру»
Я задался вопросом, как хаотическое движение облаков сказывается на процессе образования газопылевых дисков и планет. Я «помещал» облака во внешнюю среду, значительно отличающуюся по скорости и направлению вращения от той, в которой облака первоначально образовались, и прослеживал дальнейшую эволюцию системы. Выяснилось, что свойства газопылевых дисков, возникающих в результате таких численных экспериментов, существенно отличаются от свойств дисков, полученных в «стандартной» модели сжатия изолированного облака.
Так, падение вещества из внешней среды со значительно меньшей скоростью вращения, чем у диска, приведет к замедлению вращения диска и его сжатию в результате утраты «сопротивляемости» гравитационному притяжению центральной звезды. Радиус таких дисков (несколько десятков астрономических единиц) в десять раз меньше, а температура в несколько раз выше, чем у типичных дисков в стандартной модели.
И что необычного в поведении этих облаков?
Наиболее интересный эффект обнаружился при размещении облака в среду, вращающуюся в направлении, противоположном его первоначальному вращению. На первых порах эволюция системы не отличается от стандартного случая изолированного облака: сжатие приводит к образованию звезды и газопылевого диска, вращающихся в одном направлении. Однако последующее падение вещества из внешней среды приводит к образованию внешнего диска, вращающегося в направлении, противоположном вращению звезды и внутреннего диска.
Возникают два противоположно вращающихся диска, разделенные областью пониженной плотности, так называемой щелью. Интересно заметить, что подобные щели наблюдаются у протопланетных дисков, но их объяснение до сих пор сводилось к другим физическим явлениям (например, присутствию планеты, как бы расчищающей пространство вокруг себя). Как показано на рисунке, именно во внешнем диске могут зарождаться планеты, которые в конечном счете будут вращаться в направлении, противоположном собственному вращению звезды.
Механизм образования дисков с противоположным направлением вращения
Изображение: Эдуард Воробьев
Изображение демонстрирует интегральную плотность газа на луче зрения в четыре момента времени после образования центральной звезды (показана красным кружком в центре). Плотность газа увеличивается от темно-синего к светло-синему и красному цветам. Желтые стрелки указывают направление движения газа. Видно, что изначально присутствует только один диск, вращающийся против часовой стрелки. Однако уже через десять тысяч лет начинает образовываться внешний диск, вращающийся по часовой стрелке и отделенный от внутреннего диска узкой щелью с пониженной плотностью газа.
Какие есть теории ретроградного движения и все ли они объясняют?
Еще десять лет назад мало кто мог предположить существование ретроградных планет — их образование в результате коллапса изолированных облаков выглядело слишком уж экзотичным. Все изменилось в 2009 году, когда группа ученых из Великобритании обнаружила планету-гигант WASP-17b в созвездии Скорпиона на расстоянии тысячи световых лет от Земли, движущуюся по орбите в направлении, противоположном вращению родительской звезды.
Это не точное противонаправленное движение, для которого угол наклона составлял бы 180 градусов, но тем не менее результирующее движение планеты происходит в направлении, противоположном вращению звезды
WASP-17b относится к классу так называемых горячих гигантов с массой, равной половине массы Юпитера, находящихся на очень близком расстоянии от звезды и совершающих оборот вокруг светила всего за несколько земных суток. Угол наклона между орбитальной осью WASP-17b и осью вращения родительской звезды — 150 градусов.
Стрелкой на рисунке показан протопланетный эмбрион
Изображение: предоставлено Эдуардом Воробьевым
По мере падения вещества из внешней среды, увеличивается размер и масса внешнего диска, что приводит к гравитационной фрагментации и образованию протопланетных эмбрионов. С течением времени, внутренний диск постепенно аккрецирует на звезду, и эмбрионы могут мигрировать ближе к звезде. Доступные вычислительные мощности, к сожалению, не позволяют проследить эволюцию данной системы на временах, значительно больших чем один миллион лет. Ожидается, что протопланетные эмбрионы в конце концов образуют планетарную систему, вращающуюся в направлении, противоположном осевому вращению родительской звезды.
В принципе, наличие небольшого наклона между осью вращения звезды и орбитальной осью планеты не противоречит общепринятым теориям. Такой наклон может образовываться в результате гравитационного рассеивания планет при их близких сближениях — при этом угол наклона орбиты увеличивается у планеты, находящейся ближе к звезде.
Однако объяснение ретроградных орбит в рамках данной теории весьма сложное и требует тонкой комбинации таких параметров, как масса внешнего, возмущающего объекта, начальные взаимный наклон (не менее 40 градусов) и существенная эллиптичность (или эксцентриситет) орбит планет. Кроме того, данный механизм может объяснить ретроградные орбиты только у планет на очень малых расстояниях от звезды, таких как WASP-17b, и не работает для более удаленных планет.которого угол наклона составлял бы 180 градусов, но тем не менее результирующее движение планеты происходит в направлении, противоположном вращению звезды.